

Synthesis and Characterization of 5-Cyano-6-methyl-2,2'bipyridine Metal-Complex Dyes

Masaki Matsui, Koichi Matsumoto, Katsuyoshi Shibata & Hiroshige Muramatsu

Department of Chemistry, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-11, Japan

(Received 18 June 1991; accepted 31 July 1991)

ABSTRACT

New 1:1 5-cyano-6-methyl-2,2'-bipyridine-metal (Co, Ni, Cu, and Zn) complex dyes have been synthesized in good yields. The metals do not significantly affect the wavelength of maximum absorption of the complexes; substituents at the 4-position showed remarkable bathochromic shifts in the following order: $CH=CHC_6H_4NMe_2(p)>C_6H_4NMe_2(p)>C_6H_5$, ferrocenyl.

1 INTRODUCTION

Pyridine derivatives are important intermediates in the synthesis of dyes, agrochemicals, and pharmaceuticals, etc. Whereas 2,2'-bipyridine and ophenanthroline are known to form metal complexes, and can be used as indicators for metal ions, few derivatives of 2,2'-bipyridine have been synthesized. We have previously reported the synthesis of some 4,6-disubstituted 3-cyano-6-methylpyridines,¹⁻³ and we now report the synthesis and characterization of 4-substituted 5-cyano-6-methyl-2,2'-pyridine metal-complex dyes.

2 RESULTS AND DISCUSSION

Scheme 1 shows the synthetic path to the 5-cyano-6-methyl-2,2'-bipyridine metal-complex dyes 2-M. 1-(2-Pyridyl)-2-propen-1-ones 1, prepared by an

 $R = C_6H_5$, $C_6H_4(NMe_2)$, $CH=CH-C_6H_4(NMe_2)$, Ferrocenyl M = Co, Ni, Cu, Zn

Scheme 1

aldol condensation of 2-acetylpyridine with aldehydes, were treated with β -aminocrotononitrile in the presence of potassium t-butoxide to give 5-cyano-6-methyl-2,2'-bipyridines 2. A Michael addition of the imino isomer of β -aminocrotononitrile to 1, followed by intramolecular cyclization, dehydration, and dehydrogenation, gives 2^{1-3} The complex dyes 2^{-M} were obtained by treating 2 with metal chlorides.

Figure 1 shows the change in the absorption spectra of 2c resultant from the addition of Cu^{2+} ($CuCl_2 \cdot 2H_2O$). As a larger amount of Cu^{2+} is added, the absorbance at 417 nm decreases, whereas that at 490 nm increases. This result suggests that 2c reacts smoothly with Cu^{2+} to form the 2c-Cu complex. Similar results were obtained in the reaction of 2c with Co^{2+} ($CoCl_2 \cdot 6H_2O$), Ni^{2+} ($NiCl_2 \cdot 6H_2O$), and Zn^{2+} ($ZnCl_2$). No reaction of 2c was observed with $Cu(Ac)_2$ and $CuSO_4 \cdot 5H_2O$.

Figure 2 shows the plots of absorbance at 490 nm against the molecular fraction of 2c. The maximum of c.0.50 mol fraction of 2c indicated that the complex consisted of 2c and Cu in the ratio of 1:1. The same results were obtained in the reactions of 2 with Co^{2+} , Ni^{2+} , and Zn^{2+} . Bipyridine and ophenanthroline are known to form metal complexes in the ligand:metal ratio of 3:1. The steric effect of the methyl group at the 6-position of 2 may influence the 2:metal ratio to give the 1:1 adducts 2-M.

Table 1 summarizes the syntheses of 1, 2, and 2-M. The products were obtained in moderate-to-good yields.

Figure 3 shows the fast-atom-bombardment (FAB) mass spectrum of the **2c-Cu** complex. The ion peak (M^+-2Cl) of **2c-Cu** was observed at m/z 403,

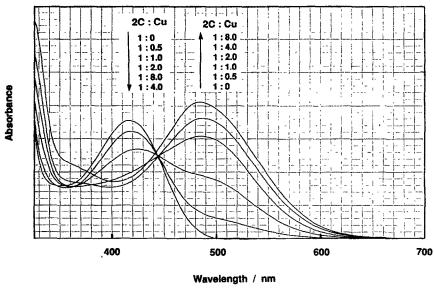


Fig. 1. Change of UV spectra of 2c by the addition of Cu²⁺. To an acetone solution of 2c was added an acetone solution of CuCl₂·2H₂O at room temperature.

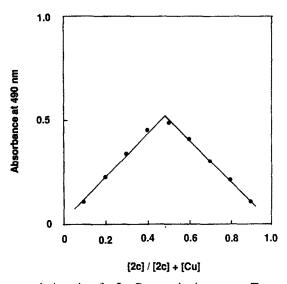
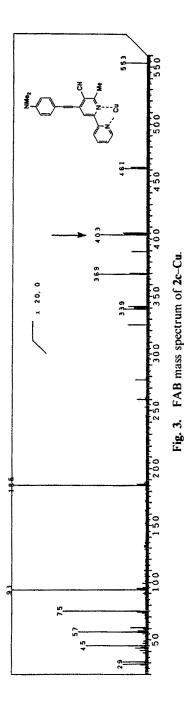



Fig. 2. Continuous-variation plots for 2e-Cu complex in acetone. To an acetone solution of 2c was added an acetone solution of CuCl₂·2H₂O at room temperature.

TABLE 1									
Syntheses of 1-(2-Pyridyl)-2-propen-1-ones (1), 5-Cyano-2-methyl-2,2'-bi-pyridines (2), and									
their Metal-Complex Dyes (2-M)									

Run	Compd	R	Yield ^a (%)			
			1	2	2-M	
1	a	C ₆ H ₅	93	39	85 (CoCl ₂)	
2					96 (NiCl ₂)	
3					78 (CuCl ₂)	
4					84 (ZnCl ₂)	
5	ь	$4-Me_2NC_6H_4$	76	70	91 (CoCl ₂)	
6					91 (NiCl ₂)	
7					90 (CuCl ₂)	
8					87 (ZnCl ₂)	
9	c	4-Me ₂ NC ₆ H ₄ CH=CH	95	42	83 (CoCl ₂)	
10					71 (NiCl ₂)	
11					79 (CuCl ₂)	
12					91 (ZnCl ₂)	
13	d	Ferrocenyl	88	59	95 (CoCl ₂)	
14		-			94 (NiCl ₂)	
15					99 (CuCl ₂)	
16					73 (ZnCl ₂)	

^a Isolated yield.

accompanied by ion peaks of the glycerol matrix (m/z = 93, 185, 277, 369, 461, and 553). Measurement of FAB mass spectra of 2-Co and 2-Zn were unsuccessful.

Table 2 summarizes the absorption spectra of 2, 2–M, and the differences of the absorption maxima wavelength ($\Delta\lambda$) between 2 and 2–M. The complex dyes 2–M showed bathochromic shifts compared with the corresponding metal free 2,2'-bipyridines 2. The absorption maxima of 2–M, which show very large absorption coefficients ($\varepsilon = 10\,500-28\,500$), can be attributed to $\pi-\pi^*$ transitions within the molecule. The longest-wavelength absorption maxima, having small extinction coefficients ($\varepsilon = 1300-2600$), of 2d–M are due to a ferrocenyl group at the 4-position. The co-ordinate metals do not significantly affect the $\lambda_{\rm max}$ of 2–M. For example, $\lambda_{\rm max}$ values of 2c–Co, 2c–Ni, 2c–Cu, and 2c–Zn were observed at 514, 483, 510, and 494 nm, respectively. This result indicates that the electron density of the nitrogen atom at the 2-position of 2–M is hardly affected by the nature of the co-ordinate metal. However, substituents at the 4-position drastically affected the $\lambda_{\rm max}$ of 2–M. For example, long wavelength bathochromic shifts of 2–Cu were observed in the following order of the substituents at the

TABLE 2
Absorption Spectra of 5-Cyano-6-methyl-2,2'-bipyridines (2) and their Metal-Complex Dyes (2-M)^a

Run	Compd	R	2		2-M			$\Delta\hat{\lambda}$
			λ _{max} (nm)	3	Metal	λ_{\max} (nm)	3	
1	2a	C ₆ H ₅	304	20 900	Со	314	14 500	10
2		• •			Ni	320	21 600	16
2					Cu	317	19 700	13
4					Zn	316	22 100	12
5	2b	$4-Me_2NC_6H_4$	381	13 600	Co	461	10 500	80
6					Ni	437	11 600	56
7					Cu	462	13 100	81
8					Zn	456	13 000	75
9	2c	4-Me ₂ NC ₆ H ₄ CH=CH	420	20 900	Co	514	15 900	94
10		• •			Ni	483	13 000	63
11					Cu	510	28 500	90
12					Zn	494	11 600	74
13	2d	Ferrocenyl	301	20 900	Co	318	21 000	17
		•	484	1 300		542	2 000	58
14					Ni	332	17 000	31
						570	2 300	86
15					Cu	320	18 000	19
						575	1 800	91
16					Zn	317	23 700	16
						565	2 600	81

^a Measured in dichloromethane.

4-position, CH=CHC₆H₄NMe₂(p) (510 nm) > C₆H₄NMe₂(p) (465 nm) > C₆H₅ (317 nm), ferrocenyl (317, 565 nm). Similar trends were observed in the cases of **2-Co**, **2-Ni**, and **2-Zn**.

3 EXPERIMENTAL

3.1 General

NMR and mass spectra were recorded on JEOL JNM-270 GX and Shimadzu 9020-DF mass spectrometers, respectively. IR and UV spectra were obtained with Perkin Elmer FT-IR 1640 and Hitachi 330 spectrophotometers, respectively. Melting points were measured with a Yanagimoto micro-melting-point apparatus and were uncorrected.

3.2 Synthesis of 1-(2-pyridyl)-2-propen-1-ones 1 (general procedure)

To an ethanol solution (20 ml) of 2-acetylpyridine (2·4 g, 0·02 mol) and the appropriate aldehyde (0·02 mol), was added 20% aqueous sodium hydroxide solution (6 ml), and the mixture was stirred at room temperature overnight. The resultant precipitate was filtered and recrystallized from ethanol. Physical and spectral data of the 1-(2-pyridyl)-2-propen-1-ones 1 are shown below.

3-Phenyl-1-(2-pyridyl)-2-propen-1-one (1a): m.p. $72\cdot5-73\cdot5^{\circ}$ C (lit⁴ m.p. 75° C); ¹H NMR (CDCl₃) δ 7·41–7·43 (m, 3H), 7·48 (dd, $J=7\cdot3$ and 4·7 Hz, 1H), 7·71–7·75 (m, 2H), 7·88 (dd, $J=8\cdot8$ and 7·3 Hz, 1H), 7·94 (d, $J=15\cdot9$ Hz, 1H), 8·19 (d, $J=8\cdot8$ Hz, 1H), 8·31 (d, $J=15\cdot9$ Hz, 1H), and 8·74 (d, $J=4\cdot7$ Hz, 1H); EIMS (70 eV) m/z (rel intensity) 209 (M⁺ 100).

3-[4-(Dimethylamino)phenyl]-1-(2-pyridyl)-2-propen-1-one (**1b**): m.p. $138\cdot0-139\cdot5^{\circ}$ C; 1 H NMR (CDCl₃) δ $3\cdot03$ (s, 6H), $6\cdot68$ (d, $J=9\cdot0$ Hz, 2H), $7\cdot64$ (d, $J=9\cdot0$ Hz, 2H), and $7\cdot43-8\cdot80$ (m, 6H); EIMS (70 eV) m/z (rel intensity) 252 (M $^{+}$, 100); HRMS m/z $252\cdot1267$. Calc. for C₁₆H₁₆N₂O: $252\cdot1262$; anal. found: C, $76\cdot03$; H, $6\cdot35$; N, $11\cdot00\%$. Calc. for C₁₆H₁₆N₂O: C, $76\cdot17$; H, $6\cdot39$; N, $11\cdot10\%$.

5-[4-(Dimethylamino)phenyl]-1-(2-pyridyl)-2,4-pentadiene-1-one (1c): m.p. 155·5-156·0°C; 1 H NMR (CDCl₃) δ 3·02 (s, 6H), 6·70 (d, J = 8·5 Hz, 2H), 6·92-7·04 (m, 2H), 7·41 (d, J = 8·5 Hz, 2H), 7·44-7·47 (m, 1H), 7·65-7·75 (m, 2H), 7·85 (ddd, J = 8·0, 7·6, and 4·8 Hz, 1H), 8·15 (d, J = 8·0 Hz, 1H), and 8·71 (d, J = 4·8 Hz, 1H); EIMS (70 eV) m/z (rel intensity) 278 (M⁺, 90) and 172 (100); HRMS m/z 278·1413. Calc. for $C_{18}H_{18}N_2O$: 278·1418; anal. found: C, 77·68; H, 6·47; N, 10·15%. Calc. for $C_{18}H_{18}N_2O$: C, 77·67; H, 6·52; N, 10·06%.

3-Ferrocenyl-1-(2-pyridyl)-2-propen-1-one (1d): m.p. $151\cdot5-152\cdot5^{\circ}$ C (lit⁵ m.p. 158° C); ¹H NMR (CDCl₃) δ 4·17 (s, 5H), 4·49 (d, $J = 1\cdot3$ Hz, 2H), 4·17 (d, $J = 1\cdot3$ Hz, 2H), 7·46 (t, 1H), 7·81–7·94 (m, 3H), 8·18 (d, $J = 7\cdot7$ Hz, 1H), and 8·73 (d, $J = 3\cdot9$ Hz, 1H); EIMS (70 eV) m/z (rel intensity) 317 (M⁺, 100).

3.3 Synthesis of 5-cyano-6-methyl-2,2'-bipyridines 2 (general procedure)

To an acetonitrile solution (50 ml) of β -aminocrotonitrile (1·2 mmol) and potassium t-butoxide (0·6 g) was added 1-(2-pyridyl)-2-propen-1-one 1 (0·1 mmol). The mixture was stirred at room temperature for 6 h. After the reaction, the product was extracted with ether (100 ml × 3) and dried over sodium sulfate. After evaporation of the solvent, the product was recrystallized from ethanol. Physical and spectral data of 5-cyano-6-methyl-2,2'-bipyridines 2 are shown below.

5-Cyano-6-methyl-4-phenyl-2,2'-bipyridine (**2a**): m.p. 175·5–179·5°C; ${}^{1}H$ NMR (CDCl₃) δ 2·93 (s, 3H), 7·37 (dd, J = 6.8 and 5·1 Hz, 1H), 7·52–7·56 (m,

3H), 7.67-7.70 (m, 2H), 7.87 (ddd, J=7.9, 6.8 and 1.6 Hz, 1H), 8.45 (s, 1H), 8.53 (d, J=7.9 Hz, 1H), and 8.70 (dd, J=5.1 and 1.6 Hz, 1H); IR (KBr) 2215 cm⁻¹; EIMS (70 eV) m/z (rel intensity) 271 (M⁺, 100); HRMS m/z 271.1122. Calc. for $C_{18}H_{13}N_3$ 271.1109; anal. found: C, 79.88; H, 4.71; N, 15.28%. Calc. for $C_{18}H_{13}N_3$: C, 79.68; H, 4.83; N, 15.49%.

5-Cyano-4-[4-(dimethylamino)phenyl]-6-methyl-2,2'-bipyridine (**2b**): m.p. 264·0–265·0°C; ¹H NMR (CDCl₃) δ 2·90 (s, 3H), 3·05 (s, 6H), 6·82 (d, $J=8\cdot5$ Hz, 2H), 7·35 (ddd, $J=6\cdot7$, 4·2, and 1·8 Hz, 1H), 7·68 (d, $J=8\cdot5$ Hz, 2H), 7·85 (ddd, $J=8\cdot0$, 6·7, and 1·8 Hz, 1H), 8·40 (s, 1H), 8·50 (dd, $J=8\cdot0$ and 1·8 Hz, 1H), and 8·71 (dd, $J=4\cdot2$ and 1·8 Hz, 1H); IR (KBr) 2219 cm⁻¹; EIMS (70 eV) m/z (rel intensity) 314 (M⁺, 100); HRMS m/z 314·1533. Calc. for C₂₀H₁₈N₄: 314·1530; anal. found: C, 76·71; H, 5·68; N, 17·81%. Calc. for C₂₀H₁₈N₄: C, 76·41; H, 5·77; N, 17·82%.

5-Cyano-4-[4-(dimethylamino)styryl]-6-methyl-2,2'-bipyridine (**2c**): m.p. 267·0–269·5°C; ¹H NMR (CDCl₃) δ 2·84 (s, 3H), 3·05 (s, 6H), 6·72 (d, J = 8·8 Hz, 2H), 7·21 (d, J = 15·9 Hz, 1H), 7·31 (dd, J = 7·3 and 4·9 Hz, 1H), 7·55 (d, J = 8·8 Hz, 2H), 7·65 (d, J = 15·9 Hz, 1H), 7·86 (ddd, J = 7·8, 7·3, and 1·8 Hz, 1H), 8·50 (d, J = 7·8 Hz, 1H), 8·60 (s, 1H), and 8·74 (dd, J = 4·9 and 1·8 Hz, 1H); IR (KBr) 2222 cm⁻¹; EIMS (70 eV) m/z (rel intensity) 340 (M⁺, 91) and 325 (100); HRMS m/z 340·1660. Calc. for $C_{22}H_{20}N_4$: 340·1687; anal. found: C, 77·34; H, 5·82; N, 16·06%. Calc. for $C_{22}H_{20}N_4$: C, 77·62; H, 5·92; N, 16·46%.

5-Cyano-4-ferrocenyl-6-methyl-2,2'-bipyridine (**2d**): m.p. $199\cdot0-200\cdot5^{\circ}$ C;

¹H NMR (CDCl₃) δ 2·87 (s, 3H), 4·19 (s, 5H), 4·55 (s, 2H), 5·19 (s, 2H), 7·36 (dd, $J=7\cdot6$ and 4·6 Hz, 1H), 7·85 (dd, $J=8\cdot0$ and 7·6 Hz, 1H), 8·44 (s, 1H), 8·49 (d, $J=8\cdot0$ Hz, 1H), and 8·73 (d, $J=4\cdot6$ Hz, 1H); IR (KBr) 2223 cm⁻¹; EIMS (70 eV) m/z (rel intensity) 379 (M⁺, 100); HRMS m/z 379·0765. Calc. for C₂₂H₁₇N₃Fe: 379·0771; anal. found: C, 69·58; H, 4·43; N, 11·11%. Calc. for C₂₂H₁₇N₃Fe: C, 69·68; H, 4·52; N, 11·08%.

3.4 Synthesis of 5-cyano-6-methyl-2,2'-bipyridine metal complex dyes (2-M) (general procedure)

To an acetone solution (200 ml) of 5-cyano-6-methyl-2,2'-bipyridine 2 (0.2 mmol) was added an acetone solution (20 ml) of a metal chloride (0.2 mmol, CoCl₂·6H₂O, CuCl₂·2H₂O, NiCl₂·6H₂O, and ZnCl₂). The mixture was stirred at room temperature for 1 h. After evaporation of the solvent, the resulting precipitate was washed with acetone and dried *in vacuo*. Melting points of all 2-M were over 300°C. The spectral data of 2-M are shown below.

5-Cyano-6-methyl-4-phenyl-2,2'-bipyridine-cobalt(II) chloride (2a-Co): IR (KBr) 2226 cm⁻¹.

- 5-Cyano-6-methyl-4-phenyl-2,2'-bipyridine-nickel(II) chloride (2a-Ni): IR (KBr) 2226 cm⁻¹; FABMS m/z 329 (M⁺-2Cl).
- 5-Cyano-6-methyl-4-phenyl-2,2'-bipyridine-copper(II) chloride (2a-Cu): IR (KBr) 2226 cm⁻¹; FABMS m/z 334 (M⁺-2Cl).
- 5-Cyano-6-methyl-4-phenyl-2,2'-bipyridine-zinc(II) chloride (2a-Zn): IR (KBr) $2226\,\mathrm{cm}^{-1}$.
- 5-Cyano-4-[4-'dimethylamino)phenyl]-6-methyl-2,2'-bipyridine-cobalt(II) chloride (2b-Co): IR (KBr) 2222 cm⁻¹.
- 5-Cyano-4-[4-(dimethylamino)phenyl]-6-methyl-2,2'-bipyridine-nickel(II) chloride (**2b-Ni**): IR (KBr) 2222 cm⁻¹; FABMS m/z 372 (M⁺-2Cl).
- 5-Cyano-4-[4 (dimethylamino)phenyl]-6-methyl-2,2'-bi, idine-copper(II) chloride (**2b-Cu**): IR (KBr) 2222 cm⁻¹; FABMS m/z 377 (M⁺-2Cl).
- 5-Cyano-4-[4-(dimethylamino)phenyl]-6-methyl-2,2'-bipyridine-zinc(II) chloride (2b-Zn): IR (KBr) 2226 cm⁻¹.
- 5-Cyano-4-[4-(dimethylamino)styryl]-6-methyl-2,2'-bipyridine-cobalt(II) chloride (2c-Co): IR (KBr) 2222 cm⁻¹.
- 5-Cyano-4-[4-dimethylamino)styryl]-6-methyl-2,2'-bipyridine-nickel(II) chloride (2c-Ni): IR (KBr) 2211 cm⁻¹; FABMS m/z 398 (M+-2Cl).
- 5-Cyano-4-[4-(dimethylamino)styryl]-6-methyl-2,2'-bipyridine-copper(II) chloride (2c-Cu): IR (KBr) 2222 cm⁻¹; FABMS m/z 403 (M⁺-2Cl).
- 5-Cyano-4-[4-(dimethylamino)styryl]-6-methyl-2,2'-bipyridine-zinc(II) chloride (2c-Zn): IR (KBr) 2222 cm⁻¹.
- 5-Cyano-4-ferrocenyl-6-methyl-2,2'-bipyridine-cobalt(II) chloride (**2d-Co**): IR (KBr) 2226 cm⁻¹.
- 5-Cyano-4-ferrocenyl-6-methyl-2,2'-bipyridine-nickel(II) chloride (**2d-Ni**): IR (KBr) 2238 cm⁻¹; FABMS m/z 437 (M⁺-2Cl).
- 5-Cyano-4-ferrocenyl-6-methyl-2,2'-bipyridine-copper(II) chloride (**2d–Cu**): IR (KBr) 2225 cm^{-1} ; FABMS m/z $442 \text{ (M}^+-2\text{Cl)}$.
- 5-Cyano-4-ferrocenyl-6-methyl-2,2'-bipyridine-zinc(II) chloride (**2d-Zn**): IR (KBr) 2238 cm⁻¹.

REFERENCES

- 1. Shibata, K., Urano, K. & Matsui, M., Bull. Chem. Soc. Japan, 61 (1988) 2199.
- Shibata, K., Katsuyama, I., Matsui, M. & Muramatsu, H., Bull. Chem. Soc. Japan, 63 (1990) 3710.
- 3. Shibata, K., Katsuyama, I., Matsui, M. & Muramatsu, H., J. Heterocyclic Chem., 28 (1991) 161.
- 4. Engler, C. & Engler, A., Chem. Ber., 35 (1902) 4061.
- 5. Boichard, J., Monin, J.-P. & Tirouflet, J., Bull. Soc. Chim. Fr. (1963) 851.